skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Huang-Saad, Aileen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. PurposeThis study examined differences related to gender and racial/ethnic identity among academic researchers participating in the National Science Foundation’s “Innovation-Corps” (NSF I-Corps) entrepreneurship training program. Drawing from prior research in the fields of technology entrepreneurship and science, technology, engineering and mathematics (STEM) education, this study addresses the goal of broadening participation in academic entrepreneurship. Design/methodology/approachUsing ANOVA and MANOVA analyses, we tested for differences by gender and minoritized racial/ethnic identity for four variables considered pertinent to successful program outcomes: (1) prior entrepreneurial experience, (2) perceptions of instructional climate, (3) quality of project team interactions and (4) future entrepreneurial intention. The sample includes faculty (n = 434) and graduate students (n = 406) who completed pre- and post-course surveys related to a seven-week nationwide training program. FindingsThe findings show that group differences based on minoritized racial/ethnic identity compared with majority group identity were largely not evident. Previous research findings were replicated for only one variable, indicating that women report lower amounts of total prior entrepreneurial experience than men, but no gender differences were found for other study variables. Originality/valueOur analyses respond to repeated calls for research in the fields of entrepreneurship and STEM education to simultaneously examine intersecting minoritized and/or under-represented social identities to inform recruitment and retention efforts. The unique and large I-Corps national dataset offered the statistical power to quantitatively test for differences between identity groups. We discuss the implications of the inconsistencies in our analyses with prior findings, such as the need to consider selection bias. 
    more » « less
  2. Although several entrepreneurship education programs (EEPs) have been created for faculty, research examining women faculty experiences participating in EEPs is minimal and particularly negligible in the context of their academic research. To address this gap, we examine women faculty’s perceptions and experiences toward EEPs in the context of biomedical (BM) research. The research question examined is as follows: how do women faculty with a BM research focus experience and/or perceive EEPs? Eight identified women faculty who pursue B.M. research participated in in-depth interviews for this study. The data analysis drew on phenomenological experience-based qualitative research methodologies. Three key themes emerged with respect to participant experiences with and perceptions of EEPs: (1) engaging in customer discovery, (2) navigating the entrepreneurial program, and (3) facing BM specific research challenges. Customer discovery was identified as the most impactful outcome, and it pushed the faculty to explore the impact of their innovations beyond their laboratory spaces; however, the customer discovery process was challenging due to the complexity of the BM environment. Furthermore, several challenges were noted when navigating the program concerning feedback delivery and students' roles. Lastly, several specific challenges were raised, specific to the lack of disciplinary diversity and post-EEP guidance on regulatory approvals and funding. We anticipate that these research-based findings will inform the continued development of EEPs that are inclusive of women STEM faculty, particularly those who are engaged in BM research. Implications for research and practice are presented in the context of the emergent findings. 
    more » « less
  3. Learners of Biomedical Engineering (BME) programs report difficulties finding relevant jobs post-graduation and also express a disconnect between their training and future professional roles. In addition, because of the interdisciplinary nature of BME, there is a lack of shared understanding of the field between learners, departments, and employers. This lack of understanding further contributes to the disconnect between instruction and practice. To bridge the gap between curricular experiences and learners' understanding of career opportunities in BME, we developed a series of 1-credit (4-week) BME-In-Practice Modules that exposed biomedical learners to biomedical engineering practice. Each 1-credit module in the series was designed to run for four weeks and focused on different areas in BME such as Tissue engineering, Computational Modeling, Medical Device Development, Drug Development, Regulations, and Neural Engineering. Learners' enrolled in one or multiple modules and engaged in experiential learning for 4-weeks to gain knowledge and skills relevant to the BME area of focus in the module(s). Following the conclusion of the BME-In-Practice series, we collected survey data from learners who participated in the modules to address the following research questions: 1) What are learners' goals and motivations for enrolling in the BME-In-Practice Module(s)? and 2) How did learners' experiences with the module(s) align with their goals and influence their graduation plans? The survey was administered using Qualtrics and consisted of multiple open-ended questions examining learners' goals and motivations for participating in the BME-in-Practice Module(s) and questions assessing their experiences with the series. Responses to the open-ended survey questions were analyzed using a qualitative interpretive approach. Our results identify different goals related to learners' professional interests and competencies when enrolling in the module. Learners' reported gaining practical experiences as well as clarity and direction about their professional futures. We also discuss the graduation plans and outcomes reported by the learners' who participated in the modules, followed by implications for practice and future research. 
    more » « less
  4. null (Ed.)
    Purpose Expanding access to entrepreneurship training programs can be a method to increase female involvement in technology commercialization only if these programs adequately address the specific challenges facing female faculty and graduate students. In the context of the US National Science Foundation's Innovation Corps (NSF I-Corps) program, this study examines gender differences in prior experience and attitudes towards the training in order to propose improvements to the program design. Design/methodology/approach This quantitative study uses Pearson's Chi-Square and ANOVA tests on survey data from the I-Corps national program ( n  = 2,195), which enrolls faculty members, graduate students, postdoctoral researchers and industry experts. Findings In comparison to male participants, female I-Corps participants reported less entrepreneurial experience prior to the program, poorer team relationships during the program and lower entrepreneurial intention and technology commercialization readiness at both the beginning and the end of the program. However, no gender differences were found in positive or negative perceptions of the instructional climate or perceptions of program usefulness. Originality/value This study is unique as it is based on a large-scale dataset drawn from sites across the United States. The results support potential changes to I-Corps and similar programs, including providing more explicit instructions for tasks with which female participants have less prior experience than males (e.g. in applying for patents), offering guidance for team interactions, and providing mentorship to assess whether low self-efficacy is leading women to underestimate the potential success of their projects. 
    more » « less
  5. null (Ed.)
  6. Evaluating the impact of entrepreneurship education is difficult given the heterogeneity of programming which presents challenges related to the generalizability of findings. The National Science Foundation’s Innovation-Corps (I-Corps) program, which incentivizes academic researchers to explore the commercialization potential of their research, offers a unique opportunity to examine the outcomes of entrepreneurship and technology commercialization training from an educational perspective given its standardization across populations and settings. We used the four-level Kirkpatrick Model for evaluating the impact of training and education programs to examine faculty experiences with I-Corps in depth. Using a qualitative inquiry methodology, we conducted 26 interviews with faculty innovators across three large public research institutions. Findings revealed that faculty had positive impressions of the program overall and attributed specific knowledge gains to participation. They also described behavioral changes impacting both their research and teaching. However, participants also identified challenges with I-Corps pedagogy and identified opportunities to improve training. This program evaluation and description of specific learning outcomes (skills, knowledge, attitude, and behaviors) contributes to best practices associated with delivering technology commercialization and entrepreneurship training to academic researchers. 
    more » « less
  7. The discipline of biomedical engineering (BME) was born from recognition that engineers need to help solve emerging biologically based problems that impact medical device design, therapeutics, diagnostics, and basic discovery. While economic indicators point to significant growth in the field, BME students are reporting significant challenges in competing for jobs against traditional engineering graduates (e.g. mechanical and electrical) and finding post-undergraduate employment. BME programs are therefore in great need of curricula that promote clear professional formation and prepare graduates to be effective in a fast growing and changing industry. Moreover, these changes must be implemented in a challenging environment in which technology and stakeholder (e.g. industry, medical schools, regulatory agencies) priorities are changing rapidly. In 2016, our department created a new model of instructional change in which the undergraduate curriculum is closely tied to the evolution of the field of BME, and in which faculty, staff, and students work together to define and implement current content and best practices in teaching. Through an Iterative Instructional Design Sequence, the department has implemented seven BME-in-Practice modules over two years. A total of 36 faculty, post docs, doctoral candidates, master’s students, and fourth year students have participated in creating the one-credit BME-in-Practice Modules exploring Tissue Engineering, Medical Device Development, Drug Development, Regulations, and Neural Engineering. A total of 23 post docs, graduate students and undergraduates participated on a teaching team responsible for teaching a BME-in-Practice module. Each module was developed to be four weeks long and met at least six hour/week. Two of the seven Modules were iterated upon from year one to year two. Modules were designed to be highly experiential where the majority of work can be completed in the classroom. A total of 50 unique undergraduates elected to enroll in the seven Modules, 73.33% of which were women. Data collected over the last two years indicate that Module students perceived significant learning outcomes and the Module teaching teams were successful in creating student centered environments. Results suggest that this mechanism enables effective, rapid adaptation of BME curriculum to meet the changing needs of BME students, while increasing student-centered engagement in the engineering classroom. Findings also suggest that this curricular is an example of an intentional curricular change that is particularly impactful for women engineering students. 
    more » « less